Continuous-wave stimulated Raman scattering (cwSRS) microscopy
نویسندگان
چکیده
منابع مشابه
Multicolor stimulated Raman scattering microscopy
Stimulated Raman scattering (SRS) microscopy has opened up a wide range of biochemical imaging applications by probing a particular Raman-active molecule vibrational mode in the specimen. However, the original implementation with picosecond pulse excitation can only realize rapid chemical mapping with a single Raman band. Here we present a novel SRS microscopic technique using a grating-based p...
متن کاملStimulated Raman scattering imaging by continuous-wave laser excitation.
We demonstrate a low-cost-stimulated Raman scattering (SRS) microscope using continuous-wave (cw) lasers as excitation sources. A dual modulation scheme is used to remove the electronic background. The cw-SRS imaging of lipids in fatty liver is demonstrated by excitation of C─H stretch vibration.
متن کاملImaging chemistry inside living cells by stimulated Raman scattering microscopy.
Stimulated Raman scattering (SRS) microscopy is a vibrational imaging platform developed to visualize chemical content of a biological sample based on molecular vibrational fingerprints. With high-speed, high-sensitivity, and three-dimensional sectioning capability, SRS microscopy has been used to study chemical distribution, molecular transport, and metabolic conversion in living cells in a la...
متن کاملVibrational imaging based on stimulated Raman scattering microscopy
A stimulated Raman scattering microscope with near-infrared picosecond laser pulses at high repetition rates (76MHz) and radio-frequency lock-in detection is accomplished. Based on stimulated Raman loss detection, we demonstrate noninvasive point-by-point vibrational mapping of chemical and biological samples with high sensitivity and without the requirement for labeling of the sample with natu...
متن کاملQuantitative chemical imaging with multiplex stimulated Raman scattering microscopy.
Stimulated Raman scattering (SRS) microscopy is a newly developed label-free chemical imaging technique that overcomes the speed limitation of confocal Raman microscopy while avoiding the nonresonant background problem of coherent anti-Stokes Raman scattering (CARS) microscopy. Previous demonstrations have been limited to single Raman band measurements. We present a novel modulation multiplexin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Physics B
سال: 2013
ISSN: 0946-2171,1432-0649
DOI: 10.1007/s00340-013-5405-6